SciELO - Scientific Electronic Library Online

 
vol.34 número2 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

    Links relacionados

    • En proceso de indezaciónCitado por Google
    • En proceso de indezaciónSimilares en Google

    Compartir


    Water SA

    versión On-line ISSN 1816-7950
    versión impresa ISSN 0378-4738

    Water SA vol.34 no.2 Pretoria feb. 2008

     

    Optimisation procedure for pipe-sizing with break-repair and replacement economics

     

     

    TR NeelakantanI; CR SuribabuII; Srinivasa LingireddyIII

    ISchool of Civil Engineering, SASTRA University, Thanjavur, TN 613402, India
    IISchool of Civil Engineering, SASTRA University, Thanjavur, TN 613402, India
    IIIDepartment of Civil Engineering, University of Kentucky, Lexington, KY 40504, USA

    Correspondence

     

     


    ABSTRACT

    The importance of incorporating break-repair costs and pipe-replacement costs in optimal design of a water distribution network is highlighted and demonstrated with a hypothetical network. Deterioration due to ageing of pipes requires expensive maintenance and causes inconvenience. The number of breaks generally increases exponentially with pipe age and small-diameter pipes are more likely to break than large-diameter pipes. After a certain age, it would be more cost-effective to replace the pipes than to repair them. The optimisation models which do not consider the maintenance costs tend to result in smaller pipe sizes. The proposed model incorporates both the repair cost and the replacement cost in addition to initial cost. The proposed model is demonstrated by applying it to a 2-loop network. Incorporating pipe-break and replacement economics into optimisation leads to slightly larger diameter pipes. The analysis also reveals that consideration of repair/replacement is essential if the pipe breaks cause high economic impact, the pipe-break growth rate increases fast and discount rate is low. For the example network considered, for a typical set of values, the cost benefit is as much as 12.92%. For cases with low breakage rates, incorporating repair/replacement has been found to make no practical difference. The results show that considering pipe break and pipe replacement in optimisation is important as this could save considerable amounts of money over the lifetime.

    Keywords: water distribution network, pipe-break analysis, optimisation, network design, economics


     

    "Full text available in PDF"

     

    References

    ALPEROVITS E and SHAMIR U (1977) Design of optimal water distribution systems. Water Resour. Res. 13 (6) 885-900.         [ Links ]

    BALLA MC and LINGIREDDY S (2000) Distributed genetic algorithm model on network of personal computers. J. Comput. Civ. Eng. ASCE 14 (3) 199-205.         [ Links ]

    BAO Y and MAYS LW (1990) Model for water distribution system reliability. J. Hydraul. Eng. ASCE 116 (9) 1119-1137.         [ Links ]

    BOCCELLI DL, TRYBY ME, UBER JG, ROSSMAN L A, ZIEROLF ML and POLYCARPOU MM (1998) Optimal scheduling of booster disinfection in water distribution systems. J. Water Resour. Plann. Manage. ASCE 124 (2) 99-111.         [ Links ]

    BOULOS PF and WOOD DJ (1990). Explicit calculation of pipe network systems. J. Hydraul. Eng. ASCE 116 (11) 1329-1344.         [ Links ]

    CULLINANE MJ, LANSEY KE and MAYS LW (1992). Optimisation-availability-based design of water distribution networks. J. Hydraul. Eng. ASCE 118 (3) 420-441.         [ Links ]

    CUNHA M and SOUSA J (1999) Water distribution network design optimisation: Simulated annealing approach. J. Water Resour. Plann. Manage. ASCE 125 (4) 215-221.         [ Links ]

    DANDY GC and ENGELHARDT M (2001) Optimal scheduling of water pipe replacement using genetic algorithms. J. Water Resour. Plann. Manage. ASCE 127 (4) 214-223.         [ Links ]

    DANDY GC and ENGELHARDT M (2006) Multi-objective trade offs between cost and reliability in the replacement of water mains. J. Water Resour. Plann. Manage. ASCE 132 (2) 79-88.         [ Links ]

    EUSUFF MM and LANSEY KE (2003) Optimisation of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plann. Manage. ASCE 129 (3) 210-225.         [ Links ]

    FUJIWARA O and DESILVA AU (1990) Algorithm for reliability-based optimal design of water networks. J. Environ. Eng. ASCE 116 (3) 575-587.         [ Links ]

    FUJIWARA O and TUNG HD (1991) Reliability improvement for water distribution networks through increasing pipe size. Water Resour. Res. 27 (7) 1395-1402.         [ Links ]

    GOULTER IC (1992) System analysis in water distribution network design: From theory to practice. J. Water Resour. Plann. Manage. ASCE 118 (3) 238-248.         [ Links ]

    GOULTER I and BOUCHART F (1990) Reliability-constrained pipe network model. J. Hydraul. Eng. ASCE 116 (2) 211-229.         [ Links ]

    GOULTER IC and COALS AV (1986) Quantitative approaches to reliability assessment in pipe networks. J. Trans. Eng. ASCE 112 (3) 287-301.         [ Links ]

    GOULTER IC and KAZEMI A (1988) Spatial and temporal groupings of water main pipe breakage in Winnipeg. Can. J. Civ. Eng. 15 91-97.         [ Links ]

    GOULTER IC, DAVIDSON J and JACOBS P (1993) Predicting water-main breakage rates. J. Water Resour. Plann. Manage. ASCE 119 (4) 419-436.         [ Links ]

    GUPTA R and BHAVE PR (1994) Reliability analysis of water distribution systems. J. Environ. Eng. ASCE 120 (2) 447-460.         [ Links ]

    JAYARAM N and SRINIVASAN K (2008) Performance based optimal design and rehabilitation of water distribution networks using life cycle costing. Water Resour. Res. 44, W01417, DOI: 10.1029/2006WR005316.         [ Links ]

    KAPELAN ZS, SAVIC DA and WALTERS ZA (2003) Multiobjective sampling design for water distribution model calibration. J. Water Resour. Plann. Manage. ASCE 129 (6) 466-479.         [ Links ]

    KETTLER AJ and GOULTER IC (1983) Reliability consideration in the least cost design of looped water distribution systems. Proc. 1983 Int. Symp. Urban Hydrol. Hydraul. and Sedi. Cont. Univ. of Kentucky, Lexington, KY, USA, 305-312.         [ Links ]

    KETTLER AJ and GOULTER IC (1985) An analysis of pipe breakage in urban water distribution networks. Can. J. Civ. Eng. 12 286-293.         [ Links ]

    KLEINER Y and RAJANI B (1999) Using limited data to assess future needs. J. Am. Water Works Assoc. 91 (7) 47-61.         [ Links ]

    LAI D and SCHAAKE J (1969) Linear Programming and Dynamic Programming Applications to Water Distribution Network Design. Report No. 116, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.         [ Links ]

    LANSEY KE, SHORBAGY WE, AHMED I, ARAUJO J and HAAN CT (2001) Calibration assessment and data collection for water distribution networks. J. Hydraul. Eng. ASCE 127 (4) 270-279.         [ Links ]

    LI D AND HAIMES YY (1992a) Optimal maintenance related decision making for deteriorating water distribution systems: 1. Semi-Markovian model for a water main. Water Resour. Res. 28 (4) 1053-1061.         [ Links ]

    LI D AND HAIMES YY (1992b) Optimal maintenance related decision making for deteriorating water distribution systems: 2. Multilevel decomposition approach. Water Resour. Res. 28 (4) 1063-1070.         [ Links ]

    LINGIREDDY S AND ORMSBEE LE (2002) Hydraulic network calibration using genetic optimisation. Civ. Eng. Environ. Syst. 19 (1) 13-39.         [ Links ]

    LINGIREDDY S, ORMSBEE LE and NEELAKANTAN TR (2000) Application of genetic optimisation in maximising hydraulic network redundancy. In: Rollin H Hotchkiss and Michael Glade (eds.) Proc. Joint Conference on Water Resour. Eng. and Water Resour. Plann. Manage (Water Resources 2000-Building Partnerships). 30 July - 02 August 2 2000, Minneapolis, Minnesota, USA.         [ Links ]

    LOGANATHAN GV, PARK S and SHERALI HD (2002) Threshold break rate for pipeline replacement in water distribution systems. J. Water Resour. Plann. Manage. ASCE 128 (4) 271-279.         [ Links ]

    LUONG HT and NAGARUR NN (2005) Optimal maintenance policy and fund allocation in water distribution networks. J. Water Resour. Plann. Manage. ASCE 131 (4) 299-306.         [ Links ]

    MAIER HR, SIMPSON AR, ZECCHIN AC, FOONG WK, PHANG KY, SEAH HY and TAN CL (2003) Ant colony optimisation for design of water distribution systems. J. Water Resour. Plann. Manage. ASCE 129 (3) 200-209.         [ Links ]

    MAILHOT A, POULIN A and VILLENEUVE JP (2003) Optimal replacement of water pipes. Water Resour. Res. 39 (5) HWC 2-1 to HWC 2-14.         [ Links ]

    MALE JW, WALSKI TM and SLUTSKY AH (1990) Analyzing water main replacement policies. J. Water Resour. Plann. Manage. ASCE 116 (3) 362-374.         [ Links ]

    MALLICK KN, AHMED I, TICKLE KS and LANSEY KE (2002) Determining pipe groupings for water distribution networks. J. Water Resour. Plann. Manage. ASCE 128 (2) 130-139.         [ Links ]

    MARTIN QW (1990) Linear water-supply pipeline capacity expansion model. J. Hydraul. Eng. ASCE 116 (5) 675-689.         [ Links ]

    ORMSBEE LE and KESSLER A (1990) Optimal upgrading of hydraulic-network reliability. J. Water Resour. Plann. Manage. ASCE 116 (6) 784-802.         [ Links ]

    PRASAD TD and PARK N (2004) Multiobjective genetic algorithms for design of water distribution networks. J. Water Resour. Plann. Manage. ASCE 130 (1) 73-82.         [ Links ]

    PRASAD TD, WALTERS WA and SAVIC DA (2004) Booster disinfection of water supply networks: Multiobjective approach. J. Water Resour. Plann. Manage. ASCE 130 (5) 367-376.         [ Links ]

    ROSSMAN LA (2000) EPANET 2- User Manual. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA.         [ Links ]

    SAVIC DA and WALTERS GA (1997) Genetic algorithm for least cost design of water distribution networks. J. Water Resour. Plann. Manage. ASCE 123 (2) 66-77.         [ Links ]

    SHAMIR U and HOWARD CDD (1979) Analytical approach to scheduling pipe replacement. J. Am. Water Works Assoc. 74 (3) 140-147.         [ Links ]

    SINSKE SA and HL ZIETSMAN (2004) A spatial decision support system for pipe-break susceptibility analysis of municipal water distribution systems. Water SA 30 (1) 71-79. http://www.wrc.org.za/archives/watersa%20archive/2004/Jan-04/11.pdf.         [ Links ]

    SIMPSON AR, DANDY GC and MURPHY LJ (1994) Genetic algorithm compared to other techniques for pipe optimisation. J. Water Resour. Plann. Manage. ASCE 120 (4) 423-443.         [ Links ]

    SU YC, MAYS LW, DUAN N and LANSEY KE (1987) Reliability-based optimisation model for water distribution systems. J. Hydraul. Eng. ASCE 114 (12) 1539-1556.         [ Links ]

    TRYBY ME, BOCCELLI DL, UBER JG and ROSSMAN LA (2002) Facility location model for booster disinfection of water supply networks. J. Water Resour. Plann. Manage. ASCE 128 (5) 322-333.         [ Links ]

    VITKOVSKY JP, SIMPSON AR and LAMBERT MF (2000) Leak detection and calibration using transients and genetic algorithms. J. Water Resour. Plann. Manage. ASCE 126 (4) 262-265.         [ Links ]

    WALSKI TM and PELLICCIA A (1982) Economic analysis of water main breaks. J. Am. Water Works Assoc. 74 (3) 140-147.         [ Links ]

     

     

    Correspondence:
    +91-04362-264101
    Fax: +91-04362-264120
    E-mail: suribabu@civil.sastra.edu

    Received 27March 2007
    Accepted in revised form 28 November 2007