SciELO - Scientific Electronic Library Online

 
vol.20 issue1 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

    Related links

    • On index processCited by Google
    • On index processSimilars in Google

    Share


    South African Journal of Industrial Engineering

    On-line version ISSN 2224-7890
    Print version ISSN 1012-277X

    S. Afr. J. Ind. Eng. vol.20 n.1 Pretoria  2009

     

    Reliability and availability analysis of the ash handling unit of a steam thermal power plant

     

     

    S. GuptaI; P.C. TewariII; A.K. SharmaIII

    IDepartment of Mechanical Engineering, Haryana College of Technology and Management, India sorabh_gupta123@rediffmail.com
    IIDepartment of Mechanical Engineering, National Institute of Technology Hamirpur, India pctewari1@rediffmail.com
    IIIDepartment of Mechanical Engineering, Deenbandhu Chhotu Ram University of Science & Technology, India avdhesh_sharma35@yahoo.co.in

     

     


    ABSTRACT

    The paper aims at assessing the reliability and availability of a critical ash handling unit of a steam thermal power plant by making a performance analysis and modeling, using probability theory and the Markov Birth-Death process. After drawing a transition diagram, differential equations are generated. After that, steady state probabilities are determined. Certain decision matrices are developed, which provide various availability levels. The behaviour analysis of the reliability module reveals that the availability decreases with increasing failure rates, while operational availability improves with initial increases in repair rates for different subsystems. Based upon various availability values, the performance of each subsystem is analyzed and used to make maintenance decisions for all subsystems.


    OPSOMMING

    Hierdie artikel poog om die betroubaarheid en beskikbaarheid van 'n kritiese ashanteringseenheid van 'n termiese stoomkragaanleg te beoordeel deur 'n werkverrigtingsanalise en modellering te doen aan die hand van waarskynlikheidsteorie en die Markovgeboorte-sterfteproses. Nadat die oorgangsdiagram opgestel is, is differensiaalvergelykings gegenereer. Vervolgens is die gestadigde-toestandwaarskynlikhede bepaal. Sekere besluitmatrikse is ontwikkel waar verskillende beskikbaarheidsvlakke verskaf is. Die analise van die gedrag van die betroubaarheidsmodule toon dat beskikbaarheid afneem met toenemende falingstempo's, terwyl operasionele beskikbaarheid verbeter met aanvanklike toenames en hersteltempo's vir die onderskeie subsisteme. Gebaseer op die verskillende beskikbaarheidswaardes, word die werkverrigting van elke subsisteem ontleed en aangewend om instandhoudingsbesluite vir alle subsisteme te neem.


     

     

    “Full text available only in PDF format” 

     

     

    REFERENCES

    [1] Raje, D.V., Olaniya, R.S., Wakhare, P.D. and Deshpande, A.W. 2000. Availability assessment of a two-unit stand-by pumping system, Reliability Engineering and System Safety, Vol. 68, pp. 269-274.         [ Links ]

    [2] Balaguruswamy, E. 1984. Reliability engineering. New Delhi: Tata McGraw Hill.         [ Links ]

    [3] Dhillon, B.S. 1983. Reliability engineering in systems design and operation. New York: Van Nostrand-Reinhold.         [ Links ]

    [4] Rajpal, P.S., Shishodia, K.S. and Sekhon, G.S. 2006. An artificial neural network for modeling reliability, availability and maintainability of a repairable system, Reliability Engineering and System Safety, Vol. 91, pp. 809-819.         [ Links ]

    [5] Zerwick, A.Y. 1996. A focused approach to reliability, availability and maintainability for critical pressure vessels and piping, International Journal of Pressure Vessels and Piping, Vol. 66, pp. 155-160.         [ Links ]

    [6] Kurien, K.C. 1988. Reliability and availability analysis of repairable system using discrete event simulation. Ph. D. thesis, IIT, New Delhi.         [ Links ]

    [7] Barabady, J. and Kumar, U. 2007. Availability allocation through importance measures, International Journal of Quality & Reliability Management, Vol. 24 No. 6, pp. 643-657.         [ Links ]

    [8] Samrout, M., Yalaoui, F., Chátelet, E. and Chebbo, N. 2005. New methods to minimize the preventive maintenance cost of series-parallel systems using ant colony optimization, Reliability Engineering and System Safety, Vol. 89 No. 3, pp. 346-354.         [ Links ]

    [9] Ebling C.E. 1997. An introduction to reliability and maintainability engineering. New Delhi: Tata McGraw Hill.         [ Links ]

    [10] Govil, A.K. 1983. Reliability engineering. New Delhi: Tata McGraw Hill.         [ Links ]

    [11] Shrinath, L.S. 1991. A text book on reliability engineering, 3rd ed.. Affiliated East-West Press Ltd.         [ Links ]

    [12] Sharma, A.K. 1994. Reliability analysis of various complex systems in thermal power station, M. Tech thesis, Kurukshetra University (REC Kurukshetra), Haryana, India.         [ Links ]

    [13] Dhillon, B.S. 1999. Design reliability fundamentals and applications. CRC Press LLC.         [ Links ]

    [14] Barlow, R. and Proschan, F. 1975. Statistical theory of reliability and life testing probability models. New York: Holt, Rinehart and Winston Inc.         [ Links ]

    [15] Pages, A. and Gondran, M. 1986. System reliability evaluation and prediction in engineering. New York: Springer.         [ Links ]

    [16] Vaurio, J.K. and Tammi P. 1995. Modeling the loss and recovery of electric power. Nuclear Eng Des 157: 281-93.         [ Links ]

    [17] Lewis, E.E. 1996. Introduction to reliability engineering. New York: Wiley.         [ Links ]

    [18] Vaurio, J.K. 1997. Reliability characteristics of components and systems with tolerable repair times, Reliability Engineering System Safety, Vol. 56, pp. 43-52.         [ Links ]

    [19] Kiureghian D.A., Ditlevsen, O.D. and Song, J. 2007 Availability, reliability and downtime of systems with repairable components, Reliability Engineering and System Safety, Vol. 92, pp. 231-242.         [ Links ]

    [20] Rao, S.S. 1992. Reliability-based design. McGraw Hill, Inc.         [ Links ]